Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1344074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505753

RESUMO

Introduction: Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. Methods and results: In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. Discussion: Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.


Assuntos
Doenças Cardiovasculares , Diabetes Gestacional , Insuficiência Cardíaca , Animais , Criança , Feminino , Humanos , Recém-Nascido , Camundongos , Gravidez , Doenças Cardiovasculares/metabolismo , Diabetes Gestacional/metabolismo , Coração , Miocárdio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
2.
Nat Commun ; 14(1): 5554, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689751

RESUMO

NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic ß cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.


Assuntos
Células Endócrinas , Células Secretoras de Insulina , Diferenciação Celular/genética , Fatores de Transcrição , Ativação Transcricional
3.
Cell Biosci ; 13(1): 53, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899442

RESUMO

BACKGROUND: Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear. RESULTS: We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas. By combining transgenic mouse models, transcriptomic and epigenomic profiling, we uncover that elimination of Isl1 results in a diabetic phenotype with a complete loss of α cells, disrupted pancreatic islet architecture, downregulation of key ß-cell regulators and maturation markers of ß cells, and an enrichment in an intermediate endocrine progenitor transcriptomic profile. CONCLUSIONS: Mechanistically, apart from the altered transcriptome of pancreatic endocrine cells, Isl1 elimination results in altered silencing H3K27me3 histone modifications in the promoter regions of genes that are essential for endocrine cell differentiation. Our results thus show that ISL1 transcriptionally and epigenetically controls α cell fate competence, and ß cell maturation, suggesting that ISL1 is a critical component for generating functional α and ß cells.

4.
Proc Natl Acad Sci U S A ; 119(37): e2207433119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36074819

RESUMO

A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.


Assuntos
Vias Auditivas , Núcleo Coclear , Células Ciliadas Auditivas , Proteínas com Homeodomínio LIM , Neurogênese , Gânglio Espiral da Cóclea , Fatores de Transcrição , Animais , Vias Auditivas/embriologia , Cóclea/embriologia , Cóclea/inervação , Núcleo Coclear/embriologia , Células Ciliadas Auditivas/fisiologia , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/fisiologia , Camundongos , Neurogênese/genética , Gânglio Espiral da Cóclea/enzimologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...